860 research outputs found

    Manifold dimension of a causal set: Tests in conformally flat spacetimes

    Full text link
    This paper describes an approach that uses flat-spacetime dimension estimators to estimate the manifold dimension of causal sets that can be faithfully embedded into curved spacetimes. The approach is invariant under coarse graining and can be implemented independently of any specific curved spacetime. Results are given based on causal sets generated by random sprinklings into conformally flat spacetimes in 2, 3, and 4 dimensions, as well as one generated by a percolation dynamics.Comment: 8 pages, 8 figure

    A combinatorial approach to discrete geometry

    Full text link
    We present a paralell approach to discrete geometry: the first one introduces Voronoi cell complexes from statistical tessellations in order to know the mean scalar curvature in term of the mean number of edges of a cell. The second one gives the restriction of a graph from a regular tessellation in order to calculate the curvature from pure combinatorial properties of the graph. Our proposal is based in some epistemological pressupositions: the macroscopic continuous geometry is only a fiction, very usefull for describing phenomena at certain sacales, but it is only an approximation to the true geometry. In the discrete geometry one starts from a set of elements and the relation among them without presuposing space and time as a background.Comment: LaTeX, 5 pages with 3 figures. To appear in the Proceedings of the XXVIII Spanish Relativity Meeting (ERE2005), 6-10 September 2005, Oviedo, Spai

    Angular quantization and the density matrix renormalization group

    Full text link
    Path integral techniques for the density matrix of a one-dimensional statistical system near a boundary previously employed in black-hole physics are applied to providing a new interpretation of the density matrix renormalization group: its efficacy is due to the concentration of quantum states near the boundary.Comment: 8 pages, 3 figures, to appear in Mod. Phys. Lett.

    A Lorentzian Gromov-Hausdoff notion of distance

    Full text link
    This paper is the first of three in which I study the moduli space of isometry classes of (compact) globally hyperbolic spacetimes (with boundary). I introduce a notion of Gromov-Hausdorff distance which makes this moduli space into a metric space. Further properties of this metric space are studied in the next papers. The importance of the work can be situated in fields such as cosmology, quantum gravity and - for the mathematicians - global Lorentzian geometry.Comment: 20 pages, 0 figures, submitted to Classical and quantum gravity, seriously improved presentatio

    Gravity and Matter in Causal Set Theory

    Full text link
    The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quantities that have a direct correspondent in the case of a causal set, namely volumes, causal relations, and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density L(f;x)L(f;x) for a set of fields ff is recast into a quasilocal expression L0(f;p,q)L_0(f;p,q) that depends on pairs of causally related points p≺qp \prec q and is a function of the values of ff in the Alexandrov set defined by those points, and whose limit as pp and qq approach a common point xx is L(f;x)L(f;x). We then describe how to discretize L0(f;p,q)L_0(f;p,q), and use it to define a discrete action.Comment: 13 pages, no figures; In version 2, friendlier results than in version 1 are obtained following much shorter derivation

    Symmetries, Horizons, and Black Hole Entropy

    Full text link
    Black holes behave as thermodynamic systems, and a central task of any quantum theory of gravity is to explain these thermal properties. A statistical mechanical description of black hole entropy once seemed remote, but today we suffer an embarrassment of riches: despite counting very different states, many inequivalent approaches to quantum gravity obtain identical results. Such ``universality'' may reflect an underlying two-dimensional conformal symmetry near the horizon, which can be powerful enough to control the thermal characteristics independent of other details of the theory. This picture suggests an elegant description of the relevant degrees of freedom as Goldstone-boson-like excitations arising from symmetry breaking by the conformal anomaly.Comment: 6 pages; first prize essay, 2007 Gravity Research Foundation essay contes

    Short-distance regularity of Green's function and UV divergences in entanglement entropy

    Get PDF
    Reformulating our recent result (arXiv:1007.1246 [hep-th]) in coordinate space we point out that no matter how regular is short-distance behavior of Green's function the entanglement entropy in the corresponding quantum field theory is always UV divergent. In particular, we discuss a recent example by Padmanabhan (arXiv:1007.5066 [gr-qc]) of a regular Green's function and show that provided this function arises in a field theory the entanglement entropy in this theory is UV divergent and calculate the leading divergent term.Comment: LaTeX, 6 page

    Thermodynamics and area in Minkowski space: Heat capacity of entanglement

    Full text link
    Tracing over the degrees of freedom inside (or outside) a sub-volume V of Minkowski space in a given quantum state |psi>, results in a statistical ensemble described by a density matrix rho. This enables one to relate quantum fluctuations in V when in the state |psi>, to statistical fluctuations in the ensemble described by rho. These fluctuations scale linearly with the surface area of V. If V is half of space, then rho is the density matrix of a canonical ensemble in Rindler space. This enables us to `derive' area scaling of thermodynamic quantities in Rindler space from area scaling of quantum fluctuations in half of Minkowski space. When considering shapes other than half of Minkowski space, even though area scaling persists, rho does not have an interpretation as a density matrix of a canonical ensemble in a curved, or geometrically non-trivial, background.Comment: 17 page

    Causal Fermion Systems: A Quantum Space-Time Emerging from an Action Principle

    Get PDF
    Causal fermion systems are introduced as a general mathematical framework for formulating relativistic quantum theory. By specializing, we recover earlier notions like fermion systems in discrete space-time, the fermionic projector and causal variational principles. We review how an effect of spontaneous structure formation gives rise to a topology and a causal structure in space-time. Moreover, we outline how to construct a spin connection and curvature, leading to a proposal for a "quantum geometry" in the Lorentzian setting. We review recent numerical and analytical results on the support of minimizers of causal variational principles which reveal a "quantization effect" resulting in a discreteness of space-time. A brief survey is given on the correspondence to quantum field theory and gauge theories.Comment: 23 pages, LaTeX, 2 figures, footnote added on page
    • …
    corecore